2 research outputs found

    Investigation of wireless power transfer-based eddy current non-destructive testing and evaluation

    Get PDF
    PhD ThesisEddy current testing (ECT) is a non-contact inspection widely used as non-destructive testing and evaluation (NDT&E) of pipeline and rail lines due to its high sensitivity to surface and subsurface defects, cheap operating cost, tolerance to harsh environments, and capability of a customisable probe for complex geometric surfaces. However, the remote field of transmitter-receiver (Tx-Rx) ECT depends on the Tx-Rx coils gap, orientation, and lift-off distance, despite each coil responding to the effect of sample parameters according to its liftoff distance. They bring challenges to accurate defect detection and characterisation by weakening the ECT probe’s transfer response, affecting sensitivity to the defect, distorting the amplitude of the extracted features, and responding with fewer feature points at non-efficient energy transfer. Therefore, this study proposed a magnetically-coupled resonant wireless power transfer (WPT)-based ECT (WPTECT) concept to build the relationship between Tx-Rx coil at maximum energy transfer response, including shifting and splitting (resonance) frequency behaviour. The proposed WPTECT system was investigated in three different studies viz., (1) investigated the multiple resonance point features for detection and characterisation of slots on two different aluminium samples using a series-series (SS) topology of WPTECT; (2) mapped and scanned pipeline with a natural dent defect using a flexible printed coil (FPC) array probe based on the parallel-parallel (PP) topology of WPTECT; and (3) evaluated five different WPTECT topologies for optimal response and extracted features and characterised entire parameters of inclined angular Rolling Contact Fatigue (RCF) cracks in a rail-line material via an optimised topology. Multiple feature extraction, selection, and fusion were evaluated for the defect profile and compared in the study, unattainable by other ECT methods. The first study's contribution investigated multiple resonances and principal component analysis (PCA) features of the transfer response from scanning (eight) slots on two aluminium samples. The results have shown the potential of the multiple features for slot depth and width characterisation and demonstrated that the eddy-current density is highest at two points proportionate to the slot width. The second study's contribution provided a larger area scanning capability in a single probe amenable to complex geometrical structures like curvature surfaces. Among the extracted individual and fused features for defect reconstruction, the multi-layer feed-forward Deep learning-based multiple feature fusion has better 3D defect reconstruction, whilst the second resonances feature provided better local information than the first one for investigating pipeline dent area. The third study's contribution optimised WPTECT topology for multiple feature points capability and its optimal features extraction at the desired lift-off conditions. The PP and combined PP and SS (PS-PS) WPTECT topologies responded with multiple resonances compared to the other three topologies, with single resonance, under the same experimental situation. However, the extracted features from PS-PS topology provided the lowest sensitivity to lift-off distances and reconstructed depth, width, and inclined angle of RCF cracks with a maximum correlation, R2 -value of 96.4%, 93.1%, and 79.1%, respectively, and root-mean-square-error of 0.05mm, 0.08mm, and 6.60 , respectively. The demonstrated magnetically-coupled resonant WPTECT Tx-Rx probe characterised defects in oil and gas pipelines and rail lines through multiple features for multiple parameters information. Further work can investigate the phase of the transfer response as expected to offer robust features for material characterisation. The WPTECT system can be miniaturised using WPT IC chips as portable systems to characterise multiple layers parameters. It can further evaluate the thickness and gap between two concentric conductive tubes; pressure tube encircled by calandria tube in nuclear reactor fuel channels.PTDF Nigeri

    Wireless power transfer-based eddy current non-destructive testing using a flexible printed coil array

    Get PDF
    Eddy current testing (ECT) has been employed as a traditional non-destructive testing and evaluation (NDT&E) tool for many years. It has developed from single frequency to multiple frequencies, and eventually to pulsed and swept-frequency excitation. Recent progression of wireless power transfer (WPT) and flexible printed devices open opportunities to address challenges of defect detection and reconstruction under complex geometric situations. In this paper, a transmitter-receiver (Tx-Rx) flexible printed coil (FPC) array that uses the WPT approach featuring dual resonance responses for the first time has been proposed. The dual resonance responses can provide multiple parameters of samples, such as defect characteristics, lift-offs and material properties, while the flexible coil array allows area mapping of complex structures. To validate the proposed approach, experimental investigations of a single excitation coil with multiple receiving coils using the WPT principle were conducted on a curved pipe surface with a natural dent defect. The FPC array has one single excitation coil and 16 receiving (Rx) coils, which are used to measure the dent by using 21 C-scan points on the dedicated dent sample. The experimental data were then used for training and evaluation of dual resonance responses in terms of multiple feature extraction, selection and fusion for quantitative NDE. Four features, which include resonant magnitudes and principal components of the two resonant areas, were investigated for mapping and reconstructing the defective dent through correlation analysis for feature selection and feature fusion by deep learning. It shows that deep learning-based multiple feature fusion has outstanding performance for 3D defect reconstruction of WPT-based FPC-ECT. This article is part of the theme issue 'Advanced electromagnetic non-destructive evaluation and smart monitoring'
    corecore